A typical procedure for path A is as follows. The reaction was carried out on $21.4 \mathrm{~g}(0.1 \mathrm{~mol})$ of methyl dodecanoate as described by Rathke ${ }^{7}$ for the conversion of ethyl hexanoate to ethyl 2-iodohexanoate except that the solution of iodine in THF was replaced by a solution of $28.3 \mathrm{~g}(0.12 \mathrm{~mol})$ of PhSeBr which was prepared by the addition of $9.60 \mathrm{~g}(0.06 \mathrm{~mol})$ of bromine to $18.7 \mathrm{~g}(0.06)$ of diphenyl diselenide in THF. After the PhSeBr had been added to the enolate at -78°, the reaction mixture was stirred for 1 hr then allowed to warm to room temperature and poured into a cold aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate, washed with $1 N \mathrm{HCl}$ and NaHCO_{3}, dried, and filtered. To the resulting yellow solution was slowly added $30 \mathrm{ml}(0.23 \mathrm{~mol})$ of $40 \%(7.7 \mathrm{M})$ peracetic acid. The turbid white mixture was stirred at $23-25^{\circ}$ for 2 hr , poured into cold (0°) water, washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, NaHSO_{3}, and brine, dried, filtered, concentrated, and distilled to yield $17.6 \mathrm{~g}(83 \%)$ of (E)-methyl 2 dodecenoate, bp $89-91^{\circ}$ (0.63 mm).

Following the above procedure exactly (0.1 mol scale) the unsaturated lactone 10 was obtained in 56% iso-

10

11
lated yield [bp $93-95^{\circ}(0.9 \mathrm{~mm})$] from the corresponding saturated γ-lactone.
With several modifications, procedure A has enabled us to effect the first synthesis of the recently isolated ${ }^{10}$ pollen attractant (11) of foraging honey bees. The enolate of methyl linoleate was prepared as described in procedure A, then 1.2 equiv of diphenyl diselenide was added in place of phenylselenenyl bromide. ${ }^{11}$ After the reaction mixture had warmed to room temperature, ~ 3 equiv of sodium periodate (dissolved in aqueous methanol) was added as the oxidant instead of the peracid or hydrogen peroxide usually employed. The methyl ester of octadeca-($E, 2 Z, Z)$ 9,12 -trienoic acid (11) was isolated (preparative tlc) in 80% yield. Its ir, nmr, and uv spectra were identical with those published for the methyl ester of the natural substance.

These new procedures for the synthesis of α, β-unsaturated carbonyl compounds should often prove superior to those previously available.

Acknowledgment. We thank Crist Filer for donating a sample of 4-acetoxycyclohexanone. One of us (K. B. S.) is grateful to Professor Hans J. Reich (Wisconsin) for communicating unpublished results similar to ours. Reich and coworkers have observed that ketone enolates as well as ester enolates react with PhSeBr to give after oxidation the unsaturated carbonyl compounds. We thank the National Science Foundation (GP-30485X), Hoffmann-La Roche Inc., the Mobil Foundation, and the donors of the Petroleum

[^0]Research Fund, administered by the American Chemical Society, for support.
(12) National Institutes of Health Predoctoral Fellow, 1969-1973.
K. B. Sharpless,* R. F. Lauer, A. Y. Teranishi ${ }^{12}$

Department of Chemistry, Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received July 2, 1973

Hydrogen-Deuterium Exchange Kinetics of the C-2 Protons of Imidazole and Histidine Compounds ${ }^{1}$

Sir:
The kinetics of the deuteration at the 2 position in imidazole and some substituted imidazoles has been studied by various workers. ${ }^{2-5}$ The mechanism proposed for the reaction involves the interaction of the protonated form of the imidazole with OD^{-}or $\mathrm{D}_{2} \mathrm{O}$, with replacement of the proton at the 2 position by a negative charge to produce an ylide (slow step). The second, fast step, involves reaction of the ylide with $\mathrm{D}_{2} \mathrm{O}$, with substitution of deuterium at the 2 position. ${ }^{5}$ We have been concerned with the determination of the $\mathrm{p} K$ values ${ }^{6-8}$ and the kinetics of the deuteration of histidine residues in proteins. ${ }^{9}$ In this communication we report on the kinetics of the deuteration of various substituted imidazole and histidine compounds, which serve as suitable model compounds for the exchange behavior in proteins.
The purities of the various model compounds shown in Table I were checked by pmr spectroscopy. The

Table I

Compound	Apparent dissociation\qquad constants ${ }^{a}$ \qquad			$\begin{gathered} k_{1} \times 10^{-3}, k_{2} \times 10^{-3} \\ \begin{array}{c} \mathrm{mol}^{-1} \\ \min ^{-1} \\ \text { l. } \mathrm{mol}^{-1} \\ \mathrm{~min}^{-1} \end{array}, \end{gathered}$	
Imidazole		7.6			$6.4{ }^{3}$
Imidazole acetic acid		7.7			$2.9{ }^{\text {c }}$
N-Acetyl-Lhistidine		7.6			$3.1{ }^{\text {b }}$
L-Histidine	6.6	7.6	9.6	$14.4{ }^{\text {b }}$	$2.8{ }^{\text {b }}$
Histamine	6.4	7.5	10.0	24^{c}	$4.2{ }^{\text {c }}$
Glycyl-Lhistidine	7.2	7.6	10.0	5.0^{c}	$3.1{ }^{\text {c }}$
β-Alanyl-Lhistidine	7.4	7.6	10.0	$4.6{ }^{6}$	$3.7{ }^{\circ}$

${ }^{a} K_{1}, K_{2}$, and K_{3} are defined by the equations $\mathrm{N}^{+} \mathrm{D}_{3} \mathrm{Im}^{+} \mathrm{DCOO}^{-}$ $\rightleftharpoons \mathrm{N}^{+} \mathrm{D}_{3} \mathrm{ImCOO}{ }^{-}+\mathrm{D}^{+}\left(K_{1}\right), \mathrm{ND}_{2} \mathrm{Im}^{+} \mathrm{DCOO}^{-} \rightleftharpoons \mathrm{ND}_{2} \mathrm{ImCOO}^{-}$ $+\mathrm{D}^{+}\left(K_{2}\right)$, and $\mathrm{N}^{+} \mathrm{D}_{3} \operatorname{ImCOO}{ }^{-} \rightleftharpoons \mathrm{ND}_{2} \operatorname{ImCOO}{ }^{-}+\mathrm{D}^{+}\left(K_{3}\right)$ where the structures are defined in the text. A detailed discussion of the origin of these values is given elsewhere. ${ }^{10}{ }^{\circ}$ At 37°. © At 35°.

[^1]

Figure 1. Graph of $k_{\text {obsd }}\left(\min ^{-1}\right)$ is. pD for N-acetyl-L-histidine (O) and L-histidine (\bullet) at 37°.
rate of $\mathrm{H}-\mathrm{D}$ exchange of $3-5 \%$ solutions of the compounds at various pD values ($\mathrm{pD}=\mathrm{pH}$ meter reading +0.4) was determined by following the decrease of the area (or height) of the C-2 proton resonances at 60 MHz as compared with the area (or height) of the $\mathrm{C}-4$ proton resonances which remained constant. ${ }^{5}$ A firstorder rate constant $k_{\text {obsd }}$ was determined from the gradient of a graph of \log (corrected area or height of C-2 resonance) vs. time., 9 At pD <5 and 35° the rate of exchange is negligibly small; hence the reaction involving $\mathrm{D}_{2} \mathrm{O}$, which is appreciable at $65^{\circ},{ }^{5}$ can be neglected. Thus, for imidazole

$$
\begin{equation*}
\text { rate }=k_{\mathrm{obsd}}\left[\operatorname{Im}_{\mathrm{t}}\right]=k_{2}\left[\mathrm{OD}^{-}\right]\left[\mathrm{Im}^{+}\right] \tag{1}
\end{equation*}
$$

where [OD^{-}] is a constant in any particular run and [Im_{t}] and $\left[\mathrm{Im}^{+}\right]$represent the total concentrations of imidazole and the charged form of imidazole, respectively. Substitution of the apparent dissociation constant of imidazole (K_{2}) and $K_{\mathrm{D}_{2} \mathrm{O}}$, the ionic product of $\mathrm{D}_{2} \mathrm{O}$, and rearrangement give

$$
\begin{equation*}
k_{\mathrm{obsd}}=k_{2} K_{\mathrm{D}_{2} \mathrm{O}} /\left(K_{2}+\left[\mathrm{D}^{+}\right]\right) \tag{2}
\end{equation*}
$$

This allows the determination of k_{2} from measurements of $k_{\text {obsd }}$ at different values of [D^{+}].

For compounds which contain a separate nearby ionizable group with a $\mathrm{p} K$ of $6-12$, the kinetics are complicated (see Figure 1) because of the different rate constants for the reaction of OD^{-}with the two forms of the compound. For example with histidine the two reactive forms are designated $\mathrm{N}^{+} \mathrm{D}_{3} \mathrm{Im}^{+} \mathrm{DCOO}^{-}\left(\mathrm{His}^{2+}\right)$ and $\mathrm{ND}_{2} \mathrm{Im}^{+} \mathrm{DCOO}^{-}\left(\mathrm{His}^{+}\right)$, where the former structure represents the positively charged forms of the amino group and imidazole ring of histidine and the charged form of the carboxyl group. Thus

$$
\begin{equation*}
\text { rate }=k_{\text {obsd }}\left[\mathrm{His}_{\mathrm{t}}\right]=\left[\mathrm{OD}^{-}\right]\left(k_{1}\left[\mathrm{His}^{2+}\right]+k_{2}\left[\mathrm{His}^{+}\right]\right) \tag{3}
\end{equation*}
$$

where [$\mathrm{His}_{\mathrm{t}}$], $\left[\mathrm{His}^{2+}\right.$], and [His^{+}] represent the total concentrations of histidine and of the two reactive forms and k_{1} and k_{2} are second-order rate constants for the reactions of OD^{-}with His^{2+} and His^{+}, respectively. Substitution for [His^{2+}] and [His^{+}] in eq 3 in terms of
K_{1}, K_{2}, and K_{3} (defined in Table I) gives ${ }^{10}$

$$
\begin{align*}
k_{\mathrm{obsd}}= & \frac{k_{1} K_{\mathrm{D}_{2} \mathrm{O}}}{K_{1}+\left[\mathrm{D}^{+}\right]+\frac{K_{1} K_{3}}{\left[\mathrm{D}^{+}\right]}+\frac{K_{1} K_{3}}{K_{2}}}+ \\
& \frac{k_{2} K_{\mathrm{D}_{2} \mathrm{O}}}{K_{2}+\left[\mathrm{D}^{+}\right]+\frac{K_{2}\left[\mathrm{D}^{+}\right]}{K_{3}}+\frac{K_{2}\left[\mathrm{D}^{+}\right]^{2}}{K_{1} K_{3}}} \tag{4}
\end{align*}
$$

By substitution of values for $K_{D_{2} 0}, K_{1}, K_{2}, K_{3}$, and $k_{\text {obsd }}$ at various values of [D^{+}] a series of equations is obtained each with two unknowns, k_{1} and k_{2}. Pairs of these equations are solved for k_{1} and k_{2} and the results (accuracy 5-10\%) are given in Table I.

The S-shaped curve for N -acetyl-L-histidine shown in Figure 1 has been obtained hitherto ${ }^{5}$ and the apparent $\mathrm{p} K$ of the imidazole can be determined from the center of the curve. ${ }^{11,12}$ However, where there is a charged group nearby to the imidazole ring which titrates at $\mathrm{pD}>8$, it is possible to obtain the $\mathrm{p} K$ of this group too, from the center of the second S-shaped curve, as shown for histidine in Figure $1 .{ }^{13}$ This is useful for proteins such as ribonuclease A, in which there are charged amino groups nearby to histidines 12 and 119. Of greater importance for protein studies are conclusions obtained from examination of second-order rate constants. Firstly, the rate constant decreases greatly from the value of 14.4 in L-histidine, by moving the charged amino group progressively further away to a value of 5.0 in glycyl-L-histidine, 4.6 in β-alanyl-Lhistidine, and finally 2.8 by removing the charge altogether as in L-histidine at high pD. Secondly, the rate constant increases greatly by eliminating a nearby charged carboxyl group as shown by comparing imidazole acetic acid with imidazole or L-histidine with histamine. Both effects are explained by a simple electrostatic mechanism in which the rate of attack of OD- is increased by nearby positively charged groups and decreased by nearby negatively charged groups.

This study allows the determination of the $\mathrm{p} K$ of titratable groups (with $\mathrm{pD}>8$) adjacent to imidazole rings and provides information on the proximity of nearby charged amino and carboxyl groups. The mapping of the environment of the histidine residues in ribonuclease A is in progress.
(10) J. H. Bradbury, B. E. Chapman, and F. A. Pellegrino, manuscript in preparation.
(11) B. E. Chapman, Ph.D. Thesis, Australian National University, 1972.
(12) H. Matsuo, M. Ohe, F. Sakiyama, and K. Narita, J. Biochem. (Tokyo), 72, 1057 (1972).
(13) There is a further increase of $k_{\text {obsd }}$ above pD 9 , in spite of the much lower value of k_{2} than k_{1}, because K_{2} is much smaller than K_{1}; see Table I and eq 4.

> J. H. Bradbury,* B. E. Chapman, F. A. Pellegrino Chemistry Department, Australian National University Canberra, A.C.T., Australia Received June 11,1973

Chemical and Physical Evidence for Anthracene-1,3-Diene Exciplexes. A Quencher-Sensitized Photodimerization
 Sir:

The quenching of the fluorescence of aromatic hydrocarbons by 1,3 -dienes has been interpreted in

[^0]: (10) C. Y. Hopkins, A. W. Jevans, and R. Boch, Can. J. Biochem., 47, 433 (1969).
 (11) The use of PhSeBr in this case gave poor yields presumably because it readily adds to olefins. We shall soon report on the synthetic utility of processes which begin with the addition of ArSeX reagents to olefins.

[^1]: (1) Financial support by the Australian Research Grants Committee is gratefully acknowledged.
 (2) H.S.Staab, Tetrahedron Lett., 845 (1964).
 (3) R. A. Olofson, W. R. Thompson, and J. S. Michelman, J. Amer. Chem. Soc., 86, 1865 (1964).
 (4) T. M. Harris and J. C. Randall, Chem. Ind. (London), 1728 (1965).
 (5) J. D. Vaughan, Z. Mughrabi, and E. C. Wu, J. Org. Chem., 35, 1141 (1970).
 (6) J. H. Bradbury and H. A. Scheraga, J. Amer. Chem. Soc., 88, 4240 (1966).
 (7) J. H. Bradbury and P. Wilairat, Biochem. Biophys. Res. Commun., 29,84(1967).
 (8) N. L. R. King and J. H. Bradbury, Nature (London), 229, 404 (1971).
 (9) J. H. Bradbury and B. E. Chapman, Biochem. Biophys. Res. Commun., 49, 891 (1972).

